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ABSTRACT 

             The purpose of this study was to, as different levels of growth occur in various size 

subgroups, investigate the practical consequences of the robustness of the IRT estimation and 

equating methods in terms of accuracy of proficiency classifications. The test consisted of 47 items 

including 38 dichotomous items and 9 polytomous items. Grade Response Model (GRM; Samejima, 

1969; 1996) and 2PL model were used. IRT true score equating with Stocking-Lord test 

characteristic curve transformation was applied. Findings indicated that, compared with other 

factors, the size of the subgroup population (i.e. large subgroup/total population ratio) affected the 

performance of IRT estimation and equating design most. In addition, regardless of the negative 

effects from the non-normal characteristics of the total population distribution, true score equating 

method via Stocking-Lord scale linking approach did play a positive role in recovering the person 

ability estimates as subgroup growth occurred across years. The study concluded that the decision 

of choosing the size of subgroup population and different growths in the subgroup population would 

lead to a very different assessment result of the academic growth for state‘s large scale assessment. 
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INTRODUCTION 

            The No Child Left Behind Act (2001) has increased interest in measuring student Adequate 

Yearly Progress (AYP) across years (Schwarz, Yen, & Schafer, 2001). Under the No Child Left 

Behind Act of 2001 (NCLB), each state is required to establish achievement standards and 

assessment systems for measuring student progress. According to the NCLB Act, federal legislation 

links funding to standardized test score improvement at Grades 3 through 8. This connection 

potentially raises the stakes associated with standardized testing throughout the nation (Jodoin, 

Keller & Swaminathan, 2003). Academic growth and the performance of subgroups are two issues 

to determine the effectiveness of educational administration and adequate yearly progress (AYP) 

under the No Child Left Behind Act of 2001.           

           Academic growth is usually assessed by comparing the performance of students on 

standardized tests across years (Jodoin, et al, 2003).  Overall, the student population for state 

educational assessments is presumed to be normally distributed. However, differences between 

subgroups across years within the student population may exist. Subgroup examinees below the 

proficiency level are often the cause for schools not making AYP. Thus, when a larger proportion of 

subgroup examinees below the proficiency level are found in the previous academic year, educators 

usually place extra efforts on lower performing subgroups in the next year to ensure their school to 

make AYP. Therefore, in this situation, subgroups of students in the second academic year should 

have more growth than others in the population (Jodoin, et al, 2003). The existence of differential 

growth by subgroups may impact the shape of the population distribution. As the population 

distribution changes, suppression or inflation of person ability estimates may occur.  So, more 

growths occurred in the subgroup students may decrease the accuracy of the test item calibration 

and ability estimation. Larger growth in subgroup may lead to the inaccuracy of the item calibration 

and ability estimation. It may also influence the accuracy of the population classification, especially 
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the students from the majority group whose abilities are close to proficiency level cut-offs may be 

categorized as the ―below the proficiency level‖ students. For instance, students from the majority 

group whose abilities score are just above the proficiency level, could be categorized as the below 

proficiency level students, as the large magnitude of subgroup growth occurs.   

             Very little research has examined how differential subgroup growth impacts population 

academic growth detection and test form equating. Also, research to examine academic growth 

detection through equating designs for subgroups of various sizes is limited. Therefore, research 

about the effect of the subgroup academic growth on the overall population equating and scoring is 

worthwhile. 

             For years, the multiple-choice (MC) item format has been the mainstay of standardized 

testing programs. Recently, mixed-format tests which include both MC and constructed response 

(CR) items have been earning increasing interests. Because MC and CR items both have their own 

advantages and limitations, the combination of both item types may allow the concatenation of their 

strengths while compensating for their weaknesses (Cao, 2008). Therefore, many state assessment 

systems, including the New England Common Assessment Program (NECAP), have embraced 

mixed-format tests. Therefore, a mixed-format test including both dichotomous MC items and 

polytomous CR items, is used in this study. 

            In the past, Item Response Theory (IRT) has been widely used in the state educational 

assessment to estimate student performances on standardized tests.  Several IRT equating methods 

are commonly applied to rescale item parameters and equate examinees‘ performance on the same 

scale so that academic growth can be detected.  Research has shown that the choice of equating 

methods has large influences on measuring academic growth (e.g. Keller, Keller & Baldwin, 2007). 

Inappropriate equating methods may result in significant numbers of examinees being placed in 
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incorrect proficiency categories, and this impact could lead to large consequential results in school‘s 

annual AYP assessment .  

             In summary, this study examined to what extent differential subgroup growths impact 

population distribution change so that the academic growth detection through commonly applied 

equating designs (e.g. test-characteristic curve method) and IRT procedures are affected. In addition, 

this study also investigated the extent to which the equating methods accurately recover population 

ability across years, for different levels of growth occurring in various size subgroups, such as 

proportion of the population and amount of growth. Finally, the accuracy of subgroup and the 

majority group classification across years were appraised as well. Mixed format tests were used in 

this study. 2PL Model and Samejima‘s Graded Response Model (1969) were also applied.  

THEORETICAL FRAMEWORK 

              In this section, the theoretical framework of the research is given. The section includes IRT 

models, equating method, and mixed test format equating weight.  

IRT Models 

           In this study, the Grade Response Model (GRM; Samejima, 1969; 1996) and 2PL model 

were used. GRM is appropriate to use as item responses are characterized as ordered categorical 

responses. GRM is an ―indirect‖ IRT model because computing the conditional probability for an 

examinee responding in a particular category requires a two-step process. 

Step One:  Operating characteristic curves 
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  Where                                                                                                                           

j
 
is a common slope parameter; the slope parameter is the slope at the point of inflection of 

the operating characteristic curves. 

jk
 
is a difficulty parameter and its value represents the trait level necessary to respond 

above threshold j with .50 probability. 

The sum of the response probabilities is equal to 0 

The higher the slope parameter ( i ), the steeper the operating characteristic curve. 

Step Two:  Category Response Curves (CRCs) 

         Category Response Curves represent the probability of an examinee responding in a 

particular category conditional on trait level.         

                                                        )()()( *
)1(

*   kijijkijk PPP                                                (2) 

The 2PL- Logistic Model can be treated as a special case of GRM.  

Scale Transformation and Equating Method 

             Some equating methods have been examined to detect academic growth, including moment 

equating methods (e.g. Keller, et al, 2007), test characteristic curve methods (e.g. Hanson & Béguin, 

2002), fixed common item parameter methods (FCIP; Paek & Young, 2005), concurrent calibration 

(e.g. Kim & Kolen, 2006), Tucker linear (von Davier & Wilson, 2008), and equipercentile (e.g. 
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Doran & Holland, 2000). Results from previous research suggested that the choice of equating 

methods have essential consequences in measuring academic growth (Jodoin, et al, 2003).  Most of 

research reported that test characteristic curve method and concurrent calibration method appear 

preferable to the other equating methods in both linking accuracy and robustness (e.g. Kang & 

Petersen, 2009). Moreover, Béguin, Hanson and Glas (2000) and Béguin and Hanson (2001) 

reported that under the circumstance of the possible IRT assumption violations, linking using the 

test characteristic curve methods, especially the Stocking-Lord method, produce more accurate 

results than concurrent calibration does. Therefore, IRT true score equating via test characteristic 

curve linking method (i.e. Stocking-Lord) was selected as an equating approach for this study to 

handle the subgroup growth situations.  

            Typically three steps are included in the test characteristic curve IRT equating procedures. 

The first step is item calibration. In this step, appropriate IRT models are used to estimate item 

parameters of the test (i.e. GRM and 2PL- Logistic Model). The second step is scale transformation 

to place the estimated parameters from different test forms onto the same scale. In the scale 

transformation step, Stocking-Lord (Stocking & Lord, 1983) approach as one of characteristic curve 

methods, is applied for placing IRT parameter estimates from different test forms onto a common 

scale. The third step is a raw-to-scale score conversion in terms of assigning ability to examinees 

based on their number-correct scores and corresponding ability estimates from specific score 

conversion tables. 

Data Collection Design 

             Among data collection designs, nonequivalent anchor test (NEAT) design (Kolen & 

Brennan, 2004) demonstrates its superiority. In the NEAT design, usually two nonequivalent groups 

of examinees exist. One group takes form X and the other takes form Y. The anchor test is a set of 
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common items in both form X and form Y. There are two types of anchors test:  external anchor test 

and internal anchor test. If the anchor section items are counted in the examinee‘s total scores, the 

anchor test is referred as an internal anchor. If the anchor section items do not contribute to the 

examinee‘s total scores, the anchor test is referred as an external anchor. In the NEAT design, 

anchor test items are treated as a mini-version of the overall test in terms of content and statistical 

specifications (Kolen & Brennan, 2004).   

Mixed Test Format Scaling Weights 

           Since a mixed test form was used in the study, applying mixed format test as an anchor in the 

test equating had its special requirements and challenges.  Before implementing equating 

approaches, the scale transformation must be conducted to place item parameters in the same scale. 

According to previous research, there are two alternative item weighting approaches for 

determining an equating line in mixed format test equating (Jodoin, et al, 2003). One item 

weighting approach is to equally weight dichotomous and polytomous items based on the difficulty 

parameters from dichotomous items and the location parameter from polytomous items. By using 

this weighting approach, on the one hand, relatively stable location parameters from the polytomous 

model are applied; on the other hand, the dichotomous items are over-weighted.  

            The other item weighting approach is to equally weight the difficulty parameters from the 

dichotomous items and the threshold parameters from the polytomous items.  In this approach, a 

scoring function is used to associate the scores with the polytomous item categories and 

dichotomous items. Let jkW refer to the integer score associated with polytomous item category 1k . 

In order to equally scale dichotomous and polytomous items, a response associated with the first 

category earns a score of 0, a response associated with the second category earns a score of 1, and 

so forth.  
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        The item response function relates total score on an item to the examinee‘s ability (e.g. ). 

This function is expressed as 

                                                          




jm

k

iijkjkij pW

1

)()(                                                        (3)

       

 

          where )( iijkp  is the category response function for item j for a polytomous IRT model. For 

mixed format tests, the test characteristic curve is calculated as  

                                                            
Xj

ijiX

:
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          In this study, the second item weighting approach was adopted. Since 2PL- model is a special 

case of the Graded Response Model (Samejima, 1969), this mixed test equating procedure is also 

applied to the 2PL- model. 

PURPOSE OF THE STUDY 

             The purpose of this study is three-fold. First, as different levels of growth occur in various 

size subgroups, to what extent differential academic growths are captured through common 

equating designs and IRT procedures. The recovery of student ability growth is demonstrated by the 

subgroup, majority group, and total group mean changes. Second, whether the equating approach 

recovers the person ability estimates, as suppression, or inflation is found in population ability 

distribution when subgroup growths exist across years. The person ability estimate recovery of the 

equating and IRT procedure is demonstrated by the descriptive statistic results under each condition. 

Third, this study investigates the robustness of the IRT estimation and equating methods in 

population achievement level classification as the subgroup growths vary in different conditions. 

This robustness of the IRT estimation and equating methods is indicated by the proportion of the 

over-classification and under-classification of examinees in the population for each condition.  
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METHOD 

Test Forms 

             The simulated data sets were generated based on population item parameters from the 2008 

New England Common Assessment Program (NECAP) Grade 8 Mathematics Test. The test 

consists of 48 items including 38 dichotomous items and 10 polytomous items. Among all 10 

polytomous items, there is one three-category item in which outlier characteristic is discovered from 

its parameters. So, this item was removed from the test form for this study. The maximum number 

of possible points is 64 in this study. Since the mixed format test is considered as an anchor test, the 

content and statistical representativeness of the anchor test must be taken into account. In previous 

research, researchers used only dichotomous items in the anchor test for its robustness when the 

content and statistical representativeness assumptions were violated (Livingston, 1994). However, 

only using dichotomous items in the anchor test might lead to some serious linking bias. Therefore, 

a mixed format anchor test should be used to represent corresponding test format and statistical 

feature of the total test (Kim & Kolen, 2006). Because the purpose of this study is to investigate the 

equating method‘s accuracy of the subgroup growth recovery and population distribution changes 

as subgroup growth occurs across years, the entire test form is applied as the anchor test form for 

different conditions. Through this design, the effect of discrepancy in content and statistical 

representativeness between the total test and anchor tests is eliminated. 

Classification Cut-scores 

             In previous research, academic growth was detected by investigating the changes of the 

percentage of examinees that fell into different classified intervals. As the cut-off score sets as the 

state proficiency level, the percentage of examinees at or above the proficiency level becomes an 

important index to report academic growth and AYP (Zhao & Hambleton, 2010). When test cut-
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scores are set, the entire examinee population distribution is divided into multiple intervals so that 

according to his/her latent performance level, every examinee in the population falls into 

corresponding classified intervals. So the academic growth can be examined in terms of the 

discrepancies of the percentage of examinees falling in the different intervals across year. On 

NECAP, there are three cut-scores separating four achievement levels on each NECAP test.  

Students are classified into one of four achievement levels based on their performance including 

―Substantially Below Proficient‖, ―Partially Proficient‖, ―Proficient‖, and ―Proficient with 

Distinction‖.  The cuts are based on the theta-scale, but for any given test there are corresponding 

raw score cuts.  Although the raw score cuts vary a little from year to year, they are usually close to 

19, 28, and 48.  For the study, scores 19, 28, and 48 are set as classification cut-scores (DePascale, 

2006).            

Simulation Design 

             A simulation study was designed using IRT true score equating via the Stocking-Lord 

linking approach as subgroup growth occurred. Simulations were conducted to investigate the 

extent to which the equating method accurately recovers group distribution changes when subgroup 

growths exist across years.  The 2PL- model and Graded Response model were adopted for 

simulation and analysis in the study. The research simulation included 100 iterations with a sample 

size 20,000.  

           This research investigated academic growth detection and ability estimate recovery in 3 

different conditions:  

 Subgroup proportion of the population (subgroup ratio) 

 Subgroup mean growth 

 Population distribution change   
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        Therefore, three factors were completely crossed: 4 (subgroup ratio)5(subgroup mean growth)

  2(population distribution change) shown in Table 1: 

i. Ratio of subgroup in the student population. Subgroup proportions 0.05, 0.1, 0.25, and 

0.5 were applied. 

ii. Subgroup ability parameter mean changes including 0 (no growth), 0.25, 0.5, 0.75, and 

1.0.  

iii. Level of student population distribution change. In this study, 3 different population 

distribution changes were considered (no changes-normal distributed, mean shift, 

skewness and kurtosis change).    

Mixed Group Ability Normal Distribution Simulation Design and Response Data 

    A series of samples with 20,000 examinees‘ ability estimates were randomly simulated for 

each of the 20 conditions.  Population ability parameters for this study were combined from a series 

of mixed group normal distributions including subgroup and majority group. The null condition 

subgroup ability parameters were obtained with the mean of -1.3 and standard deviation of 1.1 (

)1.1,3.1(~ Nsubgroup ). The majority group ability parameters were adjusted according to the 

subgroup/total population ratio and the subgroup ability parameters under each null condition (i.e. 

condition 1, 6, 11, 16) so that the population distribution under initial null condition (i.e. condition 1 

only) could approximately normally distribute with the mean of zero, and standard deviation of one 

(i.e. )1,0(~ Nj ) within a range from negative four to positive four ( ]4,4[ ). The majority group 

ability parameters remained the same with their corresponding null condition parameters regardless 

of the subgroup growth occurred across conditions. In the other null conditions (i.e. condition 6, 11, 

16), the normally distributed population distribution requirement may not be fully satisfied. This is 

because the increases of subgroup/total population ratio may result in the complex issue for the 
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mixed group normal distribution simulation. However the mean of zero for the null condition 

population distribution was ensured as the minimum requirement of the simulation for this study. 

The subgroup/majority group population density distribution examples for the first 5 conditions 

were displayed in Figure 1. Five subgroup ability distributions were included in this study (i.e.,

)1.1,3.1(N , )1.1,05.1(N , )1.1,8.0(N , )1.1,55.0(N , and )1.1,3.0(N ).                        

    For the purpose of comparison, the mean-shift conditions for the population ability 

distribution were also applied accordingly. The mean-shift condition kept the population ability 

normally distributed, but shifted the mean of the distribution across the conditions, while the 

standard deviation as one was retained. For the simplicity purpose, all simulated population 

parameters were rounded to three decimal places.  Table 2 shows the descriptive statistics of the 

population ability for simulation per each condition. The population ability density distributions of 

all the conditions are shown in Figure 2.   

            Shown in the Table 2, the means of the population ability for condition 1, 6, 11, and 16 (i.e. 

‗no subgroup growth‘ conditions) were around zero. The standard deviations of these ‗no subgroup 

growth‘ conditions were around one except condition 16. This is because in data simulation, the 

subgroup mean and standard deviation values remained at -1.1 and 1.3 respectively, as the 

subgroup/population ratio increased from 0.05 to 0.5, two groups of populations (i.e. subgroup and 

majority group) spread out the total population distribution in condition 16 to keep the total 

population mean as zero. Consequently, bimodality occurred in the total population distribution. For 

this reason, the total population standard deviation increased from 1 to 1.65 in condition 16.    

 

           The population ability distribution for most of the conditions showed negative skewed and 

leptokurtic characteristics, as the subgroup/population ratio and subgroup growth were small. When 

the subgroup/population ratio increased to its extreme, the population ability distribution shape 
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turned to platykurtic.  The descriptive statistics and population distribution for Mean-shift 

conditions are shown in Table 3 and Figure 3 as below.  

Calibration of the Data and Estimation of Abilities 

            In the study, item parameter calibration was analyzed using Marginal Maximum Likelihood 

(MML) methods with the ‗ltm‘ R package (Rizopoulos, 2006).  The estimation of the simulees‘ 

abilities was conducted by Expected a Posteriori Estimation (EAP; Bock & Mislevy, 1982).               

Procedure 

           First, a series of data simulations were conducted. Second, item calibration was operated via 

‗grm‘ function from ‗ltm‘ package (Rizopoulos, 2009) on these simulated item responses. Third, a 

set of IRT scale transformation coefficients was obtained by using the Stocking-Lord test 

characteristic curve approach via ‗plink‘ package (Weeks, 2010). Fourth, IRT true score equating 

was applied to obtain the true score and ability estimate. Fifth, the mean and standard deviation 

assigned ability estimates per conditions were calculated. The percentages of examinees falling into 

the different classification intervals were also calculated. The mean and standard deviation expected 

growth were compared to evaluate how the equating method captures the differential subgroup 

growths. The discrepancies between classification percentages of examinee ability obtained from a  

converted raw-to-scale table after equating and classification percentages of examinee ability 

obtained from the original ability distribution are obtained to evaluate how accurately the equating 

method recovered group distribution changes. Finally, the accuracy of category classification was 

assessed for both subgroup and majority group ability estimates compared with their corresponding 

population ability values.   

Evaluation Criteria 

           The estimates from the ‗no subgroup growth‘ conditions were transformed to the metric of 

the true parameter values. In this study, the Stocking-Lord linking transformation method was 
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applied and the entire test form was used as the anchor test. Then, each subsequent condition is 

equated backwards to the corresponding ‗no subgroup growth‘ condition (i.e. same 

subgroup/population ratio) using the same scale linking transformation method. 

Measure of Growth             

             The amount of subgroup growth recovered in each condition was indicated by a mean 

difference between the subgroup examinee‘s ability estimated after equating and the original true 

ability for different conditions. The other measure of growth was assessed by the classification of 

examinees into performance categories. A decrease in the number of examinees classified as 

―Substantially below proficient‖ (e.g. below cut-score 19) could be interpreted as a measure of 

academic growth.  Therefore, the discrepancy of ability estimate classification for subgroup 

population between the ability estimates after equating and original ability was investigated.  

Under-Classification and Over-Classification 

             The consistency of classification for subgroup and majority group ability parameters with 

regard to different subgroup ability growth was used as the criterion to evaluate the recovery 

capability of the equating approach and IRT calibration on population ability.  The percentages of 

over-classification and under-classification for subgroup and majority group examinees were 

summed as the classification inconsistency coefficient to indicate the capability of the equating 

approach detecting academic growth. Over-classification means the examinee‘s ability is over 

classified into a higher category. For instance, an examinee‘s true ability is just below proficiency 

level and should be classified in the below proficiency interval. However, because of inaccuracy of 

estimation or equating procedure, this examinee‘s ability is estimated above proficiency level and 

classified into the above proficiency level interval.  Under-classification is the opposite scenario of 

over-classification. In the realistic situation, under-classification negatively impacts on the results of 

the state education performance so that AYP evaluation of the states is biased.            
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RESULTS 

Descriptive Statistics and Density Distribution 

                As previous noted, it is necessary to look at the descriptive statistics and density 

distribution of the ability estimates for all the conditions. These results are shown in Table 4 and 

Figure 4.  The results in Table 4 indicated that although the population ability mean for all condition 

varied, the means of ability estimates remained around zero. Meanwhile, the magnitudes of the 

ability estimates standard deviation shrank (i.e < 1.0). The shrinkage of the ability estimates 

standard deviation occurs due to the EAP property. The ability estimates distributions for all the 

conditions turned from negative skewed to positive skewed. The ability estimate distributions for all 

the conditions held the leptokurtic characteristics, except the extreme subgroup/population ratio 

conditions (i.e. condition 16-20).  

            A possible cause of the zero value of ability estimate means is that MML was applied in 

item calibration.  In the MML method, the quadrature nodes and corresponding weights are 

assigned from a normally distributed prior distribution. In this study, updated posterior ability 

distribution was not considered for two reasons. First, the purpose of this study included how the 

differential subgroup growth affects the extent of item calibration and equating approach in 

academic growth detection. As the false normal distribution assumption holds by the default item 

calibration procedure, the accuracy of academic growth detection may decline. Second, in the 

realistic situation, the extreme subgroup/population ratio (0.5:1) may not occur.           

            Similar to the population ability distribution, as the subgroup/population ratio increased to 

its extreme, the ability estimate distribution shape turned to platykurtic. The descriptive statistics 
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and density distribution of ability estimates for mean-shift conditions are shown in Table 5 and 

Figure 4 as below.  

 

Ability Estimates Mean difference             

             The magnitude of the ability estimate mean difference is one of the important indices 

indicating the amount of academic growth recovery capability of equating approach. Table 6 lists 

the ability estimate mean difference of subgroups and majority groups for all 20 conditions. The 

difference between expected mean growth and observed mean growth indicated the robustness of 

IRT estimation procedure with prior normal distribution and the equating method on the academic 

growth detection.     

           As we can observe from the table, the results of the observed mean growth for subgroup 

showed that the equating method and IRT estimation procedure with prior normal distribution 

captured half of the subgroup academic growth when the subgroup/population ratio was small 

(i.e.0.05:1). As the subgroup/population ratio increased, the accuracy of subgroup academic growth 

recovery by the equating method and the IRT estimation procedure declined. When the 

subgroup/population ratio reached to its extreme condition, the accuracy of subgroup academic 

growth detection by the equating method and the IRT estimation procedure declined to its minimum 

but the trend of academic growth continued.  

             In the meantime, the majority group ability estimates mean difference held within a small 

magnitude level across different subgroup/population ratios. This indicated the robustness of ability 

estimation and equating methods on the no academic growth majority groups.  When the 

subgroup/population ratio held constant, the majority group ability estimates mean difference 

decreased but the absolute value of its estimate increased, as the subgroup growth increased. This 

indicated that the majority group ability estimates are negatively influenced by the magnitude of 
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subgroup growth. As the subgroup/population ratio increased, the negative impact of the majority 

group ability estimates by the magnitude of subgroup growth increased. 

Under-Classification and Over-Classification 

              The classification to put examinees into different categories based on their ability 

performance is an important index to assess how the differential subgroup growths affect the IRT 

procedure and the equating method‘s academic growth detection. Table 8 shows an example of the 

classification contingency table for conditions. The results shown in Table 8, display the 

classification of total population for null condition 1. The results in the diagonal cells indicated the 

number of correct classified examinees among total 20,000 examinees. The number in the upper 

right triangle cells revealed the number of over-classified examinees. As we can observe in the table, 

the under-classification and over-classification occurred in the null condition. The possible reason 

of these under-classification and over-classification occurrences might be the variation of the mixed 

group normal distribution simulation. The number in the lower left triangle cells indicated the 

number of under-classified examinees.  

            By summing all the number of over-classified examinees in the upper right triangle cells and 

divided by the corresponding sample size, the proportion of over-classification for each condition is 

calculated. Likewise, the proportion of under-classification for each condition is calculated, by 

summing all the number of under-classified examinees in the off diagonal lower left triangle cells 

and divided by the corresponding sample size. Table 9, Table 10, and Table 11 provide all 

conditions‘ over-/under- classification proportions results for the total population, subgroup, and 

majority group after equating. 

             Table 9 displays the under-/over- classification proportion results for the entire population. 

As we can observe from the table, several trends appeared to hold. The proportion of over-

classification for all conditions was well-controlled around 5 percent (0.05). As the subgroup 
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growth increased, the over-classification proportion decreased accordingly. Meanwhile, as the 

subgroup/total population ratio increased, the over-classification proportion decreased as well. 

However, compared with over-classification, under-classification drew more problems. As the 

subgroup/total population ratio remains low ( 1.0 ), the proportion of under-classification for 

conditions varied from 5 percent (0.05) to 10 percent (0.1). As the subgroup growth increased, the 

under-classification proportion increased accordingly. Meanwhile, as the subgroup/total population 

ratio increased, the under-classification proportion increased as well. Specifically, as the 

subgroup/total population ratio reached over 0.25, the under-classification proportion increased 

drastically. The maximum proportion of the under-classification reached over fifty percent (0.5276) 

as the subgroup growth and the subgroup/total population ratio reached to their maximum 

(subgroup growth 1.0; subgroup/total population ratio 0.5:1).  

             Table 10 displays the under-/over- classification proportion results for the subgroup 

population. Similar to the trends held in the total population, the proportion of over-classification 

for all conditions was well-controlled around 5 percent (0.05). As the subgroup growth increased, 

the over-classification proportion decreased. As the subgroup/total population ratio increased, the 

over-classification proportion decreased as well. Similar to the trends held in the total population, as 

the subgroup/total population ratio kept low ( 1.0 ), the proportion of under-classification for 

conditions varied from 1 percent (0.01) to 10 percent (0.1). As the subgroup growth increased, the 

under-classification proportion increased. Meanwhile, as the subgroup/total population ratio 

increased, the under-classification proportion increased as well. The magnitude of the under-

classification proportion increase for subgroup was not as large as its corresponding increase for the 

total population. Specifically, as the subgroup/total population ratio reached over 0.50, the under-

classification proportion increased drastically. The maximum proportion of the under-classification 

reached around forty-seven percent (0.4780) as the subgroup growth and the subgroup/total 
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population ratio reach to their maximum (subgroup growth 1.0; subgroup/total population ratio 

0.5:1). 

              Table 11 displays the under-/over- classification proportion results for the majority group 

population. Similar to how the trends held in the total population, the proportion of over-

classification for all conditions was well-controlled around 5 percent (0.05). As the subgroup 

growth increased, the over-classification proportion decreased. As the subgroup/total population 

ratio increased, the over-classification proportion decreased too. Slightly larger trends held for the 

majority group compared with total population trend, the proportion of under-classification for 

conditions varied approximately from 6 percent (0.0582) to 14 percent (0.14), when the 

subgroup/total population ratio kept low ( 1.0 ). As the subgroup growth increased, the under-

classification proportion increased accordingly. Meanwhile, as the subgroup/total population ratio 

increased, the under-classification proportion increased as well. The magnitude of the under-

classification proportion increase for the majority population was larger than its corresponding 

increase for the total population and subgroup population. Specifically, as the subgroup/total 

population ratio reached over 0.25, the under-classification proportion increased drastically. The 

maximum proportion of the under-classification reached over fifty-seven percent (0.5772) as the 

subgroup growth and the subgroup/total population ratio reached to their maximum (subgroup 

growth 1.0; subgroup/total population ratio 0.5:1). 

             Table 12, Table 13, and Table 14 provide all the mean-shift conditions‘ over-/under- 

classification proportions results for total population, subgroup, and majority group after equating, 

respectively. Table 12 displays the under-/over- classification proportion results for the entire 

population. The proportion of over-classification for all conditions was well-controlled around 5 

percent (0.05). As the subgroup growth increased, the over-classification proportion decreased 

drastically to zero. Meanwhile, as the subgroup/total population ratio increased, the over-
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classification proportion for each null condition varied, but decreased drastically when the subgroup 

growth occurred. However, compared with over-classification, under-classification drew more 

problems. As the subgroup/total population ratio remained low ( 1.0 ), the proportion of under-

classification for conditions varied from 7 percent (0.0674) to eighty-five percent (0.8522). As the 

subgroup growth increased, the under-classification proportion increased drastically. Meanwhile, as 

the subgroup/total population ratio increased, the under-classification proportion increased 

drastically. The maximum proportion of the under-classification reached over eighty-five percent 

(0.8522) as the subgroup growth and the subgroup/total population ratio at subgroup growth 1.0 and 

subgroup/total population ratio 0.05:1.  

             Table 13 displays the under-/over- classification proportion results for the mean-shift 

condition subgroup population. Similar as the trends held in the total population, the proportion of 

over-classification for all conditions was well-controlled around 5 percent (0.05). As the subgroup 

growth increased, the over-classification proportion decreased accordingly. As the subgroup/total 

population ratio increased, the over-classification proportion decreased too. As the subgroup growth 

increased, the under-classification proportion increased accordingly. The magnitude of under-

estimation proportion for all null conditions (no subgroup growth) was comparatively low (around 

0.05). However, the magnitude of under-estimation proportion increased drastically when the 

subgroup growth occurred.  Meanwhile, as the subgroup/total population ratio increased, the under-

classification proportion increased as well. The magnitude of the under-classification proportion 

increase for subgroup was not as large as its corresponding increases for the total population, but it 

still kept within a fairly high level. Specifically, as the subgroup/total population ratio reached over 

0.50, the under-classification proportion increased drastically. The maximum proportion of the 

under-classification reaches around fifty-five percent (0.5502) as the subgroup growth and the 
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subgroup/total population ratio reached to their maximum (subgroup growth 1.0; subgroup/total 

population ratio 0.5:1). 

              Table 14 displays the under-/over- classification proportion results for the mean-shift 

condition majority group population. Similar to how the trends held in the total population, the 

proportion of over-classification for all conditions was well-controlled around 5 percent (0.05). As 

the subgroup growth increased, the over-classification proportion decreased drastically. As the 

subgroup/total population ratio increased, the over-classification proportion decreased too. Slightly 

larger trends held for the majority group compared with total population trend, the proportion of 

under-classification for conditions varied approximately from seven percent (0.0704) to 

approximately seventy-eight percent (0.7787), when the subgroup/total population ratio kept low 

( 1.0 ). As the subgroup growth increased, the under-classification proportion increases. 

Meanwhile, as the subgroup/total population ratio increases, the under-classification proportion 

increased as well. The magnitude of the under-classification proportion increase for majority group 

was larger than its corresponding increases for the total population and subgroup population. The 

maximum proportion of the under-classification reached over eighty-four percent (0.8406) as the 

subgroup growth and the subgroup/total population ratio at subgroup growth 1.0 and subgroup/total 

population ratio 0.25:1. 

 

DICUSSION AND CONCLUSION  

                One purpose of this study was to evaluate the effect of subgroup growth on the 

performance of common equating designs and IRT procedures, as different levels of growth occur 

in various size subgroups. The other important purpose of this study was to assess the robustness of 

the IRT estimation and equating methods in population classification.  The results suggested that the 

size of the subgroup population (i.e. large subgroup/total population ratio) affects the performance 
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of IRT estimation and equating design most, compared with other factors.  It was found that while 

there was no subgroup growth, commonly used equating approach and IRT estimation have a very 

low performance when the subgroup/total population ratio was large. Meanwhile, the results of 

mean-shift condition indicated a worse scenario than the conditions in which only subgroup growth 

existed. This phenomenon indicated that the non-normal characteristics of the total population 

distribution negatively affected the performance of defaulted IRT estimation (i.e. normally 

distributed population distribution assumption is hold) even before the equating approach was 

applied. As the shape of the total population distribution kept approximately normal, the equating 

approach was able to detect certain amount of the subgroup academic growth. But when the shape 

of the total population distribution became non-normal, the equating approach had a very poor 

performance on the academic growth detection.  

              Since misclassification directly relates to the AYP evaluation, this measure is of utmost 

importance.  Specifically, because the under-classification negatively impacts on accountability 

results, it must be assessed carefully. There was a pattern of results of over-classification and under-

classification across conditions. On a related note, the size of the subgroup population influenced 

the over-classification and under-classification most. As the subgroup/total population ratio 

increased, the over-classification proportion decreased and the under-classification proportion 

increased dramatically for all conditions under both subgroup growth and mean shift circumstances.  

Specifically, as the subgroup/total population ratio reached over 0.25, the under-classification 

proportion inclined drastically. The maximum proportion of the under-classification usually reached 

its maximum as the subgroup growth and the subgroup/total population ratio pulled to their 

extremes.   

              On the one hand, there was high proportion of under-classification when subgroup/total 

population ratio was large, regardless of subgroup growth changed. On the other hand, if the 
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subgroup/total population ratio kept at comparatively low level (i.e. 1.0 ), over-classification 

proportion declined and the under-classification proportion inclined, as the subgroup growth 

increased.  

              Regardless of the negative effects from the non-normal characteristics of the total 

population distribution, true score equating method via Stocking-Lord scale linking approach did 

play a positive role in recovering the person ability estimates as subgroup growth occurred across 

years. As we can observe in a test characteristic curve (TCC) example from Figure 9, the equating 

approach pulled the growth-existing condition TCC (i.e. red dash growth curve line) back (i.e. green 

dot curve line) to null condition TCC (i.e. blue curve line) as subgroup growth occurred. In this 

study, because of the huge negative impact from the non-normal characteristics of the total 

population distribution on the IRT estimation, the positive effect from the true score equating 

method in person ability estimates recovery was lessened.                    

 

             In this study, a limitation exists regarding the method of multi-group mixed normal 

distribution simulation. Different ways of simulating multi-group mixed normal distribution play a 

key role in this study. Clearly, set by design, the current research results indicated that data 

simulation in this study was not fully satisfactory to meet the research design as we initially planned. 

But multi-group mixed normal distribution simulation always exists as the main issue in the 

simulation research. Thus, future studies should consider assigning quadrature nodes and 

corresponding weights for the population distribution according to the particular research design.     

            The other limitation of IRT estimation also relates to the non-normal population distribution 

characteristics. In this study, the prior ability distribution was set as default normal distribution for 

MML in IRT estimation. The default prior normal distribution was set to match the circumstance as 

the usual procedure in state‘s large scale assessment.  By setting prior distribution as normal, the 
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IRT estimation applied in this study was hugely negative influenced by the non-normality of 

simulated population distribution.  Thus, future studies should consider posterior ability distribution 

updates (Paek & Young, 2005) or nonparametric IRT approach (Sijtsma, 2002) in the IRT 

estimation step. 

               In a nutshell, the results of this study mainly met its purpose to evaluate the extent of 

differential academic growth captured through common equating designs and IRT procedures. In 

this study, the non-normality and the size of subgroup population issues merged. Therefore, the 

decision to choose the size of subgroup population would lead to a very different assessment of 

academic growth for the state‘s large scale assessment. Inappropriate subgroup population sample 

size selection may raise questions as to the appropriateness of the results of equating method 

academic growth detection. Therefore, it is important to consider the size of subgroup population 

and the distribution of population in the academic growth detection analysis. 
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APPENDIX A: TABLES 

Table 1. Condition Table (Subgroup Mean Changes and Subgroup Proportion Changes) 

 

 

 

 

 

 

 

 

Table 2. Population Ability Descriptive Statistics 

Condition Mean SD Skewness Kurtosis 

1 -0.002730 1.038479 -0.150421 0.188662 

2 0.013137 1.029892 -0.069195 0.187633 

3 0.025546 1.010727 -0.028604 0.001110 

4 0.048284 1.005603 -0.009746 0.026154 

5 0.048108 1.000159 -0.029994 0.008582 

6 0.009268 1.077265 -0.222996 0.351131 

7 0.031122 1.062435 -0.147435 0.103900 

8 0.047339 1.028688 -0.077245 0.074921 

9 0.080420 1.013663 -0.098288 0.064407 

10 0.105576 1.002670 -0.008999 -0.003690 

11 0.005810 1.245227 -0.373149 0.114772 

12 0.050811 1.185630 -0.310278 0.150854 

13 0.128736 1.127389 -0.228015 0.147986 

14 0.176984 1.089270 -0.171816 0.121146 

15 0.257999 1.048416 -0.157608 0.095907 

16 0.001765 1.645387 -0.187875 -0.747664 

17 0.114590 1.537622 -0.206840 -0.663610 

18 0.247224 1.457308 -0.210405 -0.529366 

19 0.382863 1.355198 -0.217774 -0.417714 

20 0.502713 1.280387 -0.257944 -0.280208 

 

 

 

Subgroup mean and SD Change 

  Mean Growth Level 

Subgroup: 

Population Ratio  

 0 0.25 0.5 0.75 1 

0.05 1 2 3 4 5 

0.1 6 7 8 9 10 

0.25 11 12 13 14 15 

0.5 16 17 18 19 20 
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Table 3. Mean-Shift Ability Distribution Descriptive Statistics 

Condition Mean SD Skewness Kurtosis 

1 -0.002730 1.038479 -0.150421 0.188662 

2 0.013137 1.029892 -0.069195 0.187633 

3 0.025546 1.010727 -0.028604 0.001110 

4 0.048284 1.005603 -0.009746 0.026154 

5 0.048108 1.000159 -0.029994 0.008582 

6 0.009268 1.077265 -0.222996 0.351131 

7 0.031122 1.062435 -0.147435 0.103900 

8 0.047339 1.028688 -0.077245 0.074921 

9 0.080420 1.013663 -0.098288 0.064407 

10 0.105576 1.002670 -0.008999 -0.003690 

11 0.005810 1.245227 -0.373149 0.114772 

12 0.050811 1.185630 -0.310278 0.150854 

13 0.128736 1.127389 -0.228015 0.147986 

14 0.176984 1.089270 -0.171816 0.121146 

15 0.257999 1.048416 -0.157608 0.095907 

16 0.001765 1.645387 -0.187875 -0.747664 

17 0.114590 1.537622 -0.206840 -0.663610 

18 0.247224 1.457308 -0.210405 -0.529366 

19 0.382863 1.355198 -0.217774 -0.417714 

20 0.502713 1.280387 -0.257944 -0.280208 

 

 

Table 4. Ability Estimate Distribution Descriptive Statistics 

Condition Mean SD Skewness Kurtosis 

1 0.063121447 0.754177309 0.581944054 0.192553008 

2 0.060135176 0.756830592 0.637256689 0.376974772 

3 0.05881665 0.756108023 0.623943927 0.275521334 

4 0.054296326 0.756656194 0.625826578 0.296250463 

5 0.051826328 0.756487277 0.607845892 0.255848504 

6 0.058934386 0.757845068 0.576006362 0.253694526 

7 0.052553151 0.758377864 0.574222016 0.192279165 

8 0.053472224 0.757651502 0.603069568 0.246487468 

9 0.042950453 0.757294558 0.563642212 0.12220677 

10 0.036717921 0.760312044 0.605600673 0.2143973 

11 0.046035225 0.766810348 0.455938082 -0.157590999 

12 0.040023999 0.765660234 0.484664643 -0.057543351 

13 0.026333476 0.768197704 0.51170966 0.078754968 

14 0.014851657 0.768250312 0.518789633 0.077880201 

15 -0.006329743 0.769096494 0.485023578 0.043345578 

16 0.016138247 0.818901339 0.46307724 -0.665810477 

17 0.008838046 0.812695132 0.425446384 -0.645489508 

18 -0.004423298 0.811260566 0.421569041 -0.549104919 

19 -0.028872479 0.806533237 0.392846711 -0.444049082 
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20 -0.049599957 0.801795801 0.3430849 -0.4049522 

 

Table 5. Mean-Shift Ability Estimates Distribution Descriptive Statistics 

Condition Mean SD Skewness Kurtosis 

1 0.062310375 0.754449057 0.576302804 0.166374299 

2 -0.005379136 0.7687656 0.50014477 0.058447948 

3 -0.060428414 0.783986752 0.473278573 0.065088189 

4 -0.119573144 0.799889727 0.409702325 0.059513654 

5 -0.1691386 0.812113883 0.367179791 0.049879919 

6 0.059790297 0.756802159 0.556422546 0.137574381 

7 -0.004479892 0.772261772 0.487215042 0.075953912 

8 -0.064495457 0.787262953 0.401040756 -0.005253089 

9 -0.113881554 0.802355304 0.379742443 0.020196486 

10 -0.163588536 0.654675638 0.140087008 0.045748949 

11 0.048753725 0.765321053 0.425043796 -0.181195555 

12 -0.004522168 0.781715647 0.38460532 -0.222546701 

13 -0.053850017 0.795782455 0.315809886 -0.218999559 

14 -0.101921035 0.814393909 0.261439671 -0.244087594 

15 -0.149478962 0.838240215 0.263274456 -0.121425386 

16 0.017787584 0.818126748 0.460878949 -0.697815518 

17 -0.021167916 0.838759543 0.419721942 -0.698605252 

18 -0.044206006 0.862599796 0.420603576 -0.617895676 

19 -0.058785996 0.885664848 0.415195485 -0.550136309 

20 -0.06502776 0.921186008 0.429914387 -0.486235603 

 

Table 6. Ability Estimates Mean difference (subgroup, majority group)  

Subgroup Proportion 

of Population 

 

                                                                       Subgroup Ability Expected Growth  

0.05 (1000:19000) 

Sub group expected mean growth  0.25 0.50 0.75 1.00 

Subgroup estimated mean growth 0.1212 0.2401 0.3914 0.5461 
Majority group estimated mean 

changes -0.0095 -0.0172 -0.0299 -0.0406 

0.1 (2000:18000) 

Sub group expected mean growth 0.25 0.50 0.75 1.00 

Subgroup estimated mean growth 0.0896 0.2164 0.3181 0.4829 
Majority group estimated mean 

changes -0.0170 -0.0301 -0.0531 -0.0783 

0.25 (5000: 15000) 

Sub group expected mean growth 0.25 0.50 0.75 1.00 

Subgroup estimated mean growth 0.0626 0.1221 0.1976 0.2879 
Majority group estimated mean 

changes -0.0289 -0.0670 -0.1074 -0.1658 

0.5 (10000:10000) 

Sub group expected mean growth 0.25 0.50 0.75 1.00 

Subgroup estimated mean growth 0.0221 0.0395 0.0578 0.0803 
Majority group estimated mean 

changes -0.0367 -0.0806 -0.1478 -0.2118 

 

 



 

31 

 

Table 7. Mean-Shift Ability Estimates Mean difference (subgroup, majority group)  

Subgroup Proportion 

of Population 

Subgroup theta mean after equating 

Growth 

0.05 (1000:19000) 

Sub group mean difference 0.25 0.50 0.75 1.00 

Subgroup estimated mean difference 0.1191 0.1433 0.2731 0.3403 

Majority group mean changes 0.0650 0.1217 0.1771 0.2257 

0.1 (2000:18000) 

Sub group mean difference 0.25 0.50 0.75 1.00 

Subgroup estimated mean difference 0.0656 0.1754 0.2341 0.3165 

Majority group mean changes 0.0641 0.1186 0.1670 0.2130 

0.25 (5000: 15000) 

Sub group mean difference 0.25 0.50 0.75 1.00 

Subgroup estimated mean difference 0.0626 0.1399 0.2171 0.2876 

Majority group mean changes 0.0502 0.0902 0.1285 0.1684 

0.5 (10000:10000) 

Sub group mean difference 0.25 0.50 0.75 1.00 

Subgroup estimated mean difference 0.0563 0.0965 0.1304 0.1554 

Majority group mean changes 0.0216 0.0275 0.0227 0.0103 

 

 

 

 

Table 8. Condition 1 Total Population Classification Contingency Table 

  

Estimation 

Class 1 

Estimation 

Class 2 

Estimation 

Class 3 

Estimation 

Class 4 

Classification 

based on 

ability 

Ability Class 1 5471 1049 0 0 6520 

Ability Class 2 0 3290 19 0 3309 

Ability Class 3 0 256 7164 0 7420 

Ability Class 4 0 0 862 1889 2751 

Classification based 

on Estimation 5471 4595 8045 1889 20000 
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Table 9. Total Population Over-estimation/Under-estimation Proportion 

Subgroup Proportion 

of Population 

 

                                                                       Subgroup Ability Expected Growth  

0.05 (1000:19000) 

Sub group expected mean growth  0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.0534 0.0459 0.03975 0.03025 0.02825 

Under-estimation Proportion 0.0559 0.06475 0.07075 0.08665 0.08275 

0.1 (2000:18000) 

Sub group expected mean growth 0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.04585 0.03925 0.0336 0.0141 0.0058 

Under-estimation Proportion 0.07655 0.0961 0.09375 0.11495 0.1377 

0.25 (5000: 15000) 

Sub group expected mean growth 0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.04005 0.02745 0.0019 0.00005 0.0000 

Under-estimation Proportion 0.1263 0.1446 0.19025 0.2386 0.3439 

0.5 (10000:10000) 

Sub group expected mean growth 0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.02825 0.006 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.1836 0.22905 0.3131 0.44025 0.5276 

 

 

 

 

Table 10. Subgroup Over-estimation/Under-estimation Proportion 

Subgroup Proportion 

of Population 

 

                                                                       Subgroup Ability Expected Growth  

0.05 (1000:19000) 

Sub group expected mean growth  0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.0450 0.0440 0.0430 0.0290 0.0290 

Under-estimation Proportion 0.0120 0.0220 0.0330 0.0640 0.0680 

0.1 (2000:18000) 

Sub group expected mean growth 0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.0390 0.0430 0.0355 0.0120 0.0080 

Under-estimation Proportion 0.0200 0.0305 0.0475 0.0660 0.1070 

0.25 (5000: 15000) 

Sub group expected mean growth 0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.0460 0.0312 0.0032 0.0002 0.0000 

Under-estimation Proportion 0.0288 0.0492 0.1012 0.1504 0.2830 

0.5 (10000:10000) 

Sub group expected mean growth 0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.0480 0.0102 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.0593 0.1109 0.2150 0.3736 0.4780 
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Table 11. Majority Group Over-estimation/Under-estimation Proportion 

Subgroup Proportion 

of Population 

 

                                                                       Subgroup Ability Expected Growth  

0.05 (1000:19000) 

Sub group expected mean growth  0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.0538 0.0460 0.0396 0.0303 0.0282 

Under-estimation Proportion 0.0582 0.0670 0.0727 0.0878 0.0835 

0.1 (2000:18000) 

Sub group expected mean growth 0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.0466 0.0388 0.0334 0.0143 0.0056 

Under-estimation Proportion 0.0828 0.1034 0.0989 0.1204 0.1411 

0.25 (5000: 15000) 

Sub group expected mean growth 0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.0381 0.0262 0.0015 0.0000 0.0000 

Under-estimation Proportion 0.1588 0.1764 0.2199 0.2680 0.3642 

0.5 (10000:10000) 

Sub group expected mean growth 0.00 0.25 0.50 0.75 1.00 

Over-estimation Proportion 0.0085 0.0018 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.3079 0.3472 0.4112 0.5069 0.5772 

 

 

 

Table 12. Mean-Shift Total Population Over-estimation/Under-estimation Proportion 

Subgroup 

Proportion of 

Population 

  

                                                                       Subgroup Ability Expected Growth  

0.05 

(1000:19000) 

Sub group expected mean growth  0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0488 0.0000 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.0674 0.3304 0.5798 0.7565 0.8522 

0.1 

(2000:18000) 

Sub group expected mean growth 0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0562 0.0000 0.0000 0.0000 0.0483 

Under-estimation Proportion 0.0734 0.3360 0.5816 0.7463 0.7287 

0.25 (5000: 

15000) 

Sub group expected mean growth 0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0451 0.0000 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.1251 0.3458 0.5704 0.7226 0.7661 

0.5 

(10000:10000) 

Sub group expected mean growth 0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0278 0.0000 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.1771 0.3153 0.4397 0.5003 0.5492 
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Table 13. Mean-Shift Subgroup Over-estimation/Under-estimation Proportion 

Subgroup 

Proportion of 

Population 

  

                                                                       Subgroup Ability Expected Growth  

0.05 

(1000:19000) 

Sub group expected mean growth  0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0360 0.0000 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.0110 0.1520 0.3180 0.4390 0.5550 

0.1 

(2000:18000) 

Sub group expected mean growth 0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0555 0.0000 0.0000 0.0000 0.0430 

Under-estimation Proportion 0.0190 0.1515 0.3235 0.4550 0.5195 

0.25 (5000: 

15000) 

Sub group expected mean growth 0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0496 0.0000 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.0264 0.1520 0.3222 0.4564 0.5426 

0.5 

(10000:10000) 

Sub group expected mean growth 0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0462 0.0000 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.0595 0.1940 0.3557 0.4579 0.5502 

 

 

 

 

Table 14. Mean-Shift Majority Group Over-estimation/Under-estimation Proportion 

Subgroup Proportion of 

Population 

  

                                                                       Subgroup Ability Expected Growth  

0.05 (1000:19000) 

Sub group expected mean growth  0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0494 0.0000 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.0704 0.3398 0.5936 0.7732 0.8678 

0.1 (2000:18000) 

Sub group expected mean growth 0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0562 0.0000 0.0000 0.0000 0.0488 

Under-estimation Proportion 0.0794 0.3564 0.6103 0.7787 0.7519 

0.25 (5000: 15000) 

Sub group expected mean growth 0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0435 0.0000 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.1579 0.4103 0.6531 0.8113 0.8406 

0.5 (10000:10000) 

Sub group expected mean growth 0 0.25 0.5 0.75 1 

Over-estimation Proportion 0.0093 0.0000 0.0000 0.0000 0.0000 

Under-estimation Proportion 0.2947 0.4365 0.5237 0.5427 0.5481 
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APPENDIX B: FIGURES 

Figure 1. Subgroup/Major group Population Ability Density Distribution-Condition 1-5 
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Figure 2. Population Ability Density Distribution-Condition 1-20 

 

 

 

 

Figure 3. Mean-Shift Ability Density Distribution-Condition 1-20 
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Figure 4. Ability Estimates Density Distribution Condition 1-20 

 

 

 

 

Figure 5. Mean-Shift Ability Estimates Density Distribution Condition 1-20 
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Figure 6. Test Characteristic Curve Example 

 

 


